Distinct functions of maternal and somatic Pat1 protein paralogs.

نویسندگان

  • Aline Marnef
  • Maria Maldonado
  • Anthony Bugaut
  • Shankar Balasubramanian
  • Michel Kress
  • Dominique Weil
  • Nancy Standart
چکیده

We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5' UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis

During oogenesis, numerous messenger RNAs (mRNAs) are maintained in a translationally silenced state. In eukaryotic cells, various translation inhibition and mRNA degradation mechanisms congregate in cytoplasmic processing bodies (P bodies). The P body protein Dhh1 inhibits translation and promotes decapping-mediated mRNA decay together with Pat1 in yeast, and has been implicated in mRNA storag...

متن کامل

Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex.

The DEAD-box protein DDX6 is a central component of translational repression mechanisms in maternal mRNA storage in oocytes and microRNA-mediated silencing in somatic cells. DDX6 interacts with the CCR4-NOT complex and functions in concert with several post-transcriptional regulators, including Edc3, Pat1, and 4E-T. We show that the conserved CUP-homology domain (CHD) of human 4E-T interacts di...

متن کامل

همسانه سازی و بررسی بیان موقت پیشبر pat1 گیاه سیب زمینی با استفاده از سیستم اگرواینفیلتریشن

  To achieve the high level of gene expression, promoters are key elements. Patatin promoter has been used as a specific gene expression in potato tubers. Patatin is a group of glycol protein in potato tuber which is code by a multiple family genes. This protein makes up more than 40% of soluble proteins of potato tubers. Class I Promoters mainly responsible for tuber -specific expression patte...

متن کامل

Pat1 proteins: a life in translation, translation repression and mRNA decay.

Pat1 proteins are conserved across eukaryotes. Vertebrates have evolved two Pat1 proteins paralogues, whereas invertebrates and yeast only possess one such protein. Despite their lack of known domains or motifs, Pat1 proteins are involved in several key post-transcriptional mechanisms of gene expression control. In yeast, Pat1p interacts with translating mRNPs (messenger ribonucleoproteins), an...

متن کامل

Dietary Proteins, Developmental Programming, and Potential Implication in Maternal Obesity

Background: Proteins are known mainly based on their metabolic and nutritional functions including protein synthesis and a source of energy. In spite of various physiological properties attributed to proteins, their functions have neither been addressed by assessing quality of proteins nor by nutrition and dietetic practices. Methods: Studies were included if they were randomized animal studies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2010